پروژه های شبیه سازی شده با WEKA

(Weka) ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻭﮐﺎ

ﻣﻘﺪﻣﻪ 

ایتدا قبل از این که بخواهیم در مورد این نرم افزار توضیح دهیم ، به حوزه ی مورد استفاده ی آن اشاره ای می کنیم و در مورد داده کاوی در این نرم افزار توضیح می دهیم.

داده کاوی یا دیتاماینینگ ، در هسته ی خود ، به معنی تبدیل مقدار زیادی از داده به قسمت های معنی دار و با قواعد را می گویند. به عبارت دیگر ، می تواند به دو قسمت تقسیم بندی شود:

به شکل مستقیم و به شکل غیر مستقیم . در داده کاوی به شکل مستقیم شما قصد دارید که یک مقدار داده های یک نقطه ی مشخصی را پیش بینی کنید .

مانند پیش بینی رشد قیمت خانه و پیش بینی برای خرید در زمانی مشخص

در شکل غیر مستقیم ، شما تعدادی گروه داده ایجاد می کنید یا تعدادی الگو در داده های موجود پیدا کنید .

داده کاوی صرفا در حوزه شرکت های بزرگ و نرم افزار های گران قیمت نیست . در واقع یک نوع نرم افزار وجود دارد که بتواند تقریبا همه ی همان چیزهایی که نرم افزار های گران انجام می دهند ، انجام دهد . آن نرم افزار همان وکا است. وکا محصول و ساخته شده ی دانشگاه وایکاتو در نیوزلند است  و در ابتدا در سال ۱۹۹۷ طراحی و توسعه داده شد.

وکا از الگوریتم های زیادی برخوردار است که می توان به شکل زیربه آنها اشاره کرد :

طبقه بندی : درخت تصمیم ،‌ نزدیک ترین نقطه ها ،‌الگوریتم کوتاه ترین مسیر ، بیز ساده

پیش بینی کردن :‌ رگرسیون خطی و غیر خطی ، الگوریتم ادراکی

روش های متا : الگوریتم کیسه ، الگوریتم افزایش

این روش ها در قسمت های یادگیری ماشین با نظارت و بدون نطارت و همچنین تقویتی و خود تکمیلی تقسیم می شوند.

الگوریتم های زیادی در این نرم افزار وجود دارند که به اختصار به تعدادی از انها اشاره کردیم .

البته در مورد الگوریتم های ناشناخته تر دیگر نیز وکا یک باکسی فراهم کرده تا اطلاعات اولیه ای برای اشنایی با آن به شما بدهد  اینگونه بتوانید حداقل اطلاعات راجع به آن الگوریتم را داشته باشید .

ﻭﮐﺎ ﺷﺎﻣﻞ ﻣﺠﻤﻮﻋﻪ ﺍﯼ ﺍﺯ ﺍﺑﺰﺍﺭ ﻫﺎﯼ ﺩﻳﺪﺍﺭﯼ ﺳﺎﺯﯼ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﻳﯽ ﺑﺮﺍﯼ ﺁﻧﺎﻟﻴﺰ ﻭ ﺑﺮﺭﺳﯽ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﭘﻴﺶ ﺑﻴﻨﯽ ﺁﻧﻬﺎ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﺭﺍﺑﻂ ﮐﺎﺭﺑﺮﯼ ﮔﺮﺍﻓﻴﮑﯽ ﺁﻥ ﮐﺎﺭ ﺑﺮﺍﯼ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺍﻳﻦ ﺗﻮﺍﺑﻊ ﻭ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺭﺍ ﺁﺳﺎﻥ ﺗﺮ ﮐﺮﺩﻩ ﺍﺳﺖ. ﺩﺭ ﻣﺪﻝ ﻫﺎﯼ ﻗﺒﻠﯽ ﻭﮐﺎ ﺑﻪ ﺯﺑﺎﻥ ﻫﺎﯼ ﺩﻳﮕﺮ  ﭘﻴﺎﺩﻩ ﺳﺎﺯﯼ ﺷﺪﻩ ﺑﻮﺩ ﻭ ﺍﺯ ﺍﻳﻦ ﺭﺍﺑﻂ ﮐﺎﺭﺑﺮﯼ ﺑﺮﺧﻮﺭﺩﺍﺭ ﻧﺒﻮﺩ. ﺁﺧﺮﻳﻦ ﻭﺭﮊﻥ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻭﺭﮊﻥ ۳ ﺁﻥ ﻣﯽ ﺑﺎﺷﺪ ﮐﻪ ﺷﺎﻣﻞ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻳﺎﺩﮔﻴﺮﯼ ﻣﺎﺷﻴﻦ ﺯﻳﺎﺩﯼ ﻣﯽ ﺑﺎﺷﺪ .

ﺑﺮﺍﯼ ﻓﺎﻳﺪﻩ ﻫﺎﯼ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻣﯽ ﺗﻮﺍﻥ ﺭﺍﻳﮕﺎﻥ ﺑﻮﺩﻥ ﺁﻥ ﺭﺍ ﻧﺎﻡ ﺑﺮﺩ ﻭ ﺍﻳﻦ ﮐﻪ ﺍﻳﻦ ﻧﺮﻡ ﺍﻓﺰﺍﺭ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﭘﻠﺘﻔﺮﻡ ﺧﺎﺻﯽ ﻧﻴﺴﺖ ﻭ ﺑﺮ ﺭﻭﯼ ﺗﻤﺎﻡ ﭘﻠﺘﻔﺮﻡ ﻫﺎﯼ ﻣﺤﺎﺳﺒﺎﺗﯽ ﮐﻪ ﺟﺎﻭﺍ ﺩﺍﺷﺘﻪ ﺑﺎﺷﻨﺪ ﻗﺎﺑﻞ ﻧﺼﺐ ﻣﯽ ﺑﺎﺷﺪ.

ﻭﮐﺎ ﺍﺯ ﺍﺳﺘﺎﻧﺪﺍﺭﺩ ﻫﺎﯼ ﺯﻳﺎﺩﯼ ﺑﺮﺍﯼ ﺩﺍﺩﻩ ﮐﺎﻭﯼ ﺑﻪ ﺧﺼﻮﺹ پردازش کزدن ، کلاستر بندی ، طبقه بندی و رگرسیون برخوردار می باشد. ﺑﺮﺧﻮﺭﺩﺍﺭﯼ ﺍﺯ ﺍﻳﻦ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﺎ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﻓﺎﻳﻞ ﻫﺎﯼ ﺩﺍﺩﻩ ﻫﺎ ﺍﻣﮑﺎﻥ ﭘﺬﻳﺮ ﻣﯽ ﺑﺎﺷﺪ . ﻭﮐﺎ ﺍﻣﮑﺎﻥ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻫﺎﯼ ﭘﻴﺎﺩﻩ ﺷﺪﻩ ﺑﺎ ﺯﻳﺎﻥ ﺍﺳﮑﻴﻮﻝ ﺭﺍ ﻧﻴﺰ ﻓﺮﺍﻫﻢ ﻣﯽ ﮐﻨﺪ ﻭ ﻣﯽ ﺗﻮﺍﻧﺪ ﻧﺘﺎﻳﺞ ﻣﻮﺭﺩ ﻧﻈﺮ ﺭﺍ ﺩﺭ ﻗﺎﻟﺐ ﻳﮏ ﭘﺮﺱ ﻭ ﺟﻮ ﺑﺎ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻓﺮﺍﻫﻢ ﮐﻨﺪ.

رابط کاربری اصلی وکا ، اکسئلورر می باشد اما از قسمت های دیگر نیز امکان دسترسی به توابع موجود می باشد. قسمت های دیگر نرم افزار شامل یک آزمایشگر ، ﻳﮏ ﮔﺮﺍﻑ ﮐﻨﺘﺮﻝ ﺟﺮﻳﺎﻥ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﻳﮏ ﺧﻂ ﻓﺮﻣﺎﻥ ﺳﺎﺩﻩ ﻣﯽ ﺑﺎﺷﺪ  .

ﻗﺴﻤﺖ ﺍﮐﺴﭙﻠﻮﺭﺭ ﺩﺭ ﻭﮐﺎ ﭼﻨﺪ ﭘﻨﻞ ﺑﺮﺍﯼ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﻭ ﻭﻳﮋﮔﯽ ﻫﺎ ﻓﺮﺍﻫﻢ ﮐﺮﺩﻩ ﺍﺳﺖ .

۱ – ﭘﻴﺶ ﭘﺮﺩﺍﺯﺵ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺩﺍﺩﻩ ﻫﺎ ﺑﻪ ﺷﮑﻞ ﻓﺎﻳﻞ ﻭﺭﻭﺩﯼ ARFF ،csv ﻳﺎ ﺍﺭﺗﺒﺎﻁ ﺑﺎ ﭘﺎﻳﮕﺎﻩ ﺩﺍﺩﻩ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺍﺳﺖ .

۲ – ﻃﺒﻘﻪ ﺑﻨﺪﯼ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺿﺎﻓﻪ ﮐﺮﺩﻥ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻃﺒﻘﻪ ﺑﻨﺪﯼ ﻳﺎ ﺭﮔﺮﺳﻴﻮﻥ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺗﺎ ﮐﺎﺭﺑﺮ ﺑﻪ ﺳﺎﺩﮔﯽ ﺑﺘﻮﺍﻧﺪ ﺍﺯ ﺗﻌﺪﺍﺩ ﺯﻳﺎﺩﯼ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻣﺮﺑﻮﻃﻪ ﺑﻪ ﻋﻨﻮﺍﻥ ﻣﺜﺎﻝ ROC ، ﺩﺭﺧﺖ ﺗﺼﻤﻴﻢ ﻭ … ﺍﺳﺘﻔﺎﺩﻩ ﮐﻨﺪ.

۳ – ﻭﺍﺑﺴﺘﮕﯽ : ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﻳﮏ ﺩﺳﺘﺮﺳﯽ ﺑﻪ ﺑﺨﺶ ﻗﻮﺍﻧﻴﻦ ﻓﺮﺍﻫﻢ ﺷﺪﻩ ﺗﺎ ﺍﺭﺗﺒﺎﻁ ﻣﻴﺎﻥ ﺩﺍﺩﻩ ﻫﺎ ﻭ ﻗﻮﺍﻧﻴﻦ ﺩﻳﺪﻩ ﺷﻮﺩ.

۴ – ﮐﻼﺳﺘﺮ : ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﻣﮑﺎﻥ ﺍﺳﺘﻔﺎﺩﻩ ﺍﺯ ﺗﮑﻨﻴﮏ ﻫﺎﯼ ﮐﻼﺳﺘﺮﻳﻨﮓ ﺭﺍ ﺑﺮﺍﯼ ﻣﺎ ﻓﺮﺍﻫﻢ ﻣﯽ ﮐﻨﺪ ﮐﻪ ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻣﯽ ﺗﻮﺍﻥ ﺑﻪ ﺍﻟﮕﻮﺭﻳﺘﻢ k-means ﺍﺷﺎﺭﻩ ﮐﺮﺩ. ﻫﻤﭽﻨﻴﻦ ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﭘﻴﺎﺩﻩ ﺳﺎﺯﯼ ﻫﺎﯼ ﺩﻳﮕﺮﯼ ﺑﺮﺍﯼ ﺗﻮﺯﻳﻊ ﻫﺎﯼ ﻧﺮﻣﺎﻝ ﻧﻴﺰ ﻭﺟﻮﺩ ﺩﺍﺭﺩ.

۵ – ﻧﻤﺎﺩﻳﻨﻪ ﺳﺎﺯﯼ : ﺩﺭ ﺍﻳﻦ ﺑﺨﺶ ﻣﯽ ﺗﻮﺍﻥ ﻧﺘﻴﺠﻪ ﯼ ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎ ﺑﺮ ﺭﻭﯼ ﺩﺍﺩﻩ ﻫﺎ ﺭﺍ ﺑﻪ ﺷﮑﻞ ﭘﻼﺕ ﻭ ﻧﻤﻮﺩﺍﺭ ﻣﺸﺎﻫﺪ ﮐﺮﺩ.

 

ﺍﻟﮕﻮﺭﻳﺘﻢ ﻫﺎﯼ ﻭﮐﺎ

ﺩﺭ ﺍﻳﻦ ﻗﺴﻤﺖ ﺍﺑﺘﺪﺍ ﺑﻪ ﺗﻮﺿﻴﺢ ﺍﻟﮕﻮﺭﻳﺘﻢ ﺭﮔﺮﺳﻴﻮﻥ ﻭ ﮐﺎﺭﺑﺮﺩ ﺁﻥ ﺩﺭ ﻭﮐﺎ ﻣﯽ ﭘﺮﺩﺍﺯﻳﻢ :

ﺭﮔﺮﺳﻴﻮﻥ ﻳﮑﯽ ﺍﺯ ﺳﺎﺩﻩ ﺗﺮﻳﻦ ﺭﻭﺵ ﻫﺎ ﺑﺮﺍﯼ ﺍﺳﺘﻔﺎﺩﻩ ﺩﺭ ﻭﮐﺎ ﺍﺳﺖ ﺍﻣﺎ ﺑﻪ ﺗﻨﺎﺳﺐ ﺍﺯ ﻗﺪﺭﺕ ﮐﻤﺘﺮﯼ ﻧﻴﺰ ﺑﺮﺧﻮﺭﺩﺍﺭ ﺍﺳﺖ . ﺍﻳﻦ ﻣﺪﻝ ﺑﻪ ﺳﺎﺩﮔﯽ ﺍﻳﻦ ﺍﺳﺖ ﮐﻪ ﻣﯽ ﺗﻮﺍﻧﺪ ﻳﮏ ﻭﺭﻭﺩﯼ ﺑﮕﻴﺮﺩ ﻭ ﻳﮏ ﺧﺮﻭﺟﯽ ﺑﺪﻫﺪ . ﺍﻟﺒﺘﻪ ﻣﻘﺎﺩﻳﺮ ﭘﻴﭽﻴﺪﻩ ﺗﺮﯼ ﺍﺯ ﺍﻳﻦ ﻧﻴﺰ ﻣﯽ ﺗﻮﺍﻧﺪ ﺩﺭﻳﺎﻓﺖ ﮐﻨﺪ ﻭ ﺧﺮﻭﺟﯽ ﻫﺎﯼ ﻣﺘﻨﺎﺳﺒﯽ ﺑﺎ ﺁﻥ ﻧﻴﺰ ﺑﺪﻫﺪ.

ﺑﻪ ﺑﻴﺎﻧﯽ ﺩﻳﮕﺮ ﻣﯽ ﺗﻮﺍﻥ ﮔﻔﺖ ﮐﻪ ﺭﮔﺮﺳﻴﻮﻥ ﺣﻮﻝ ﺩﺍﺩﻩ ﻫﺎﻳﯽ ﺑﺎ ﻳﮏ ﻧﻮﻉ ﺍﻋﻤﺎﻝ ﻣﯽ ﺷﻮﻧﺪ. ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻳﮏ ﺳﺮﯼ ﻣﺘﻐﻴﺮ ﻫﺎﯼ ﻣﺴﺘﻘﻞ ﻭﺟﻮﺩ ﺩﺍﺭﻧﺪ ﮐﻪ ﻫﻨﮕﺎﻣﯽ ﮐﻪ ﺑﺎ ﻫﻢ ﻣﺘﺼﻞ ﻣﯽ ﺷﻮﻧﺪ ﻳﮏ ﻧﺘﻴﺠﻪ ﻭﺍﺑﺴﺘﻪ ﺑﻪ ﻫﻢ ﺭﺍ ﻣﯽ ﺳﺎﺯﻧﺪ.

ﻫﻤﭽﻨﻴﻦ ﺍﺯ ﺭﮔﺮﺳﻴﻮﻥ ﺑﺮﺍﯼ ﭘﻴﺶ ﺑﻴﻨﯽ ﮐﺮﺩﻥ ﻧﺘﻴﺠﻪ ﺍﺯ ﻳﮏ ﺳﺮﯼ ﻣﺘﻐﻴﺮ ﻫﺎﯼ ﻣﺴﺘﻘﻞ ﻧﺎﺷﻨﺎﺧﺘﻪ ﻧﻴﺰ ﺍﺳﺘﻔﺎﺩﻩ ﻣﯽ ﺷﻮﺩ. ﺑﺮﺍﯼ ﻣﺜﺎﻝ ﻣﯽ ﺗﻮﺍﻥ ﺑﻪ ﺭﻭﺵ ﭘﻴﺶ ﺑﻴﻨﯽ ﻗﻴﻤﺖ ﺧﺎﻧﻪ ﺑﺎ ﺭﮔﺮﺳﻴﻮﻥ ﺍﺷﺎﺭﻩ ﮐﺮﺩ.